KONA Powder and Particle Journal No. 33 (2016) 63–85/Doi:10.14356/kona.2016014
نویسندگان
چکیده
This article reviews the pulmonary route of administration, aerosol delivery devices, characterization of pulmonary drug delivery systems, and discusses the rationale for inhaled delivery of siRNA. Diseases with known protein malfunctions may be mitigated through the use of siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics for the treatment of various pulmonary diseases, however barriers to pulmonary delivery and intracellular delivery of siRNA exists. siRNA loaded nanocarriers can be used to overcome the barriers associated with the pulmonary route, such as anatomical barriers, mucociliary clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems comprise of lipidic, polymeric, peptide, or inorganic origin. Such siRNA delivery systems formulated as aerosols can be successfully delivered via an inhaler or nebulizer to the pulmonary region. Preclinical animal investigations of inhaled siRNA therapeutics rely on intratracheal and intranasal siRNA and siRNA nanocarrier delivery. Aerosolized siRNA delivery systems may be characterized using in vitro techniques, such as dissolution test, inertial cascade impaction, delivered dose uniformity assay, laser diffraction, and laser Doppler velocimetry. The ex vivo techniques used to characterize pulmonary administered formulations include the isolated perfused lung model. In vivo techniques like gamma scintigraphy, 3D SPECT, PET, MRI, fluorescence imaging and pharmacokinetic/pharmacodynamics analysis may be used for evaluation of aerosolized siRNA delivery systems. The use of inhalable siRNA delivery systems encounters barriers to their delivery, however overcoming the barriers while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.
منابع مشابه
KONA Powder and Particle Journal No. 34 (2017) 3–23/Doi:10.14356/kona.2017004
There is great demand for nanoparticles (NPs) dispersed in liquid phases for practical applications of functional NP materials. However, it is difficult to produce NP dispersions with specific particle sizes, concentrations, viscosities, and purities on an industrial scale (large mass production rate and low energy consumption). In this review, we highlight recent developments in NP dispersion ...
متن کاملKONA Powder and Particle Journal No. 34 (2017) 44–69/Doi:10.14356/kona.2017005
In this article, applications of engineered nanoparticles containing siRNA for inhalation delivery are reviewed and discussed. Diseases with identified protein malfunctions may be mitigated through the use of well-designed siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics to the lungs for various pulmonary diseases. A siRNA delivery system ...
متن کاملKONA Powder and Particle Journal No. 33 (2016) 340–353/Doi:10.14356/kona.2016025
Generally, indium-tin-oxides (ITO) thin film is prepared by the sputtering process with ITO target, but only 20 % of ITO yielded from the target is deposited on the substrate. Namely, about 80 % ITO is exhausted by the deposition elsewhere far from the substrate. The recycling process of indium is limited so that ca. 20 % ITO of the starting material is lost without any recovery. Even if the re...
متن کاملCommunity preparedness for lava flows from Mauna Loa and Hualālai volcanoes , Kona , Hawai i
Lava flows from Mauna Loa and Hualālai volcanoes are a major volcanic hazard that could impact the western portion of the island of Hawai‘i (e.g., Kona). The most recent eruptions of these two volcanoes to affect Kona occurred in a.d. 1950 and ca. 1800, respectively. In contrast, in eastern Hawai‘i, eruptions of neighboring Kı̄lauea volcano have occurred frequently since 1955, and therefore have...
متن کاملMissing Genes, Multiple ORFs, and C-to-U Type RNA Editing in Acrasis kona (Heterolobosea, Excavata) Mitochondrial DNA
Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015